Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.05.502758

ABSTRACT

Unremitting emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants imposes us to continuous control measurement. Given the rapid spread, new Omicron subvariant named BA.5 is urgently required for characterization. Here we analyzed BA.5 with the other Omicron variants BA.1, BA.2, and ancestral B.1.1 comprehensively. Although in vitro growth kinetics of BA.5 is comparable among the Omicron subvariants, BA.5 become much more fusogenic than BA.1 and BA.2. The airway-on-a-chip analysis showed that the ability of BA.5 to disrupt the respiratory epithelial and endothelial barriers is enhanced among Omicron subvariants. Furthermore, in our hamster model, in vivo replication of BA.5 is comparable with that of the other Omicrons and less than that of the ancestral B.1.1. Importantly, inflammatory response against BA.5 is strong compared with BA.1 and BA.2. Our data suggest that BA.5 is still low pathogenic compared to ancestral strain but evolved to induce enhanced inflammation when compared to prior Omicron subvariants.


Subject(s)
Coronavirus Infections , Inflammation
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.26.493539

ABSTRACT

After the global spread of SARS-CoV-2 Omicron BA.2 lineage, some BA.2-related variants that acquire mutations in the L452 residue of spike protein, such as BA.2.9.1 and BA.2.13 (L452M), BA.2.12.1 (L452Q), and BA.2.11, BA.4 and BA.5 (L452R), emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these L452R/M/Q-bearing BA.2-related Omicron variants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1 and BA.2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. Furthermore, infection experiments using hamsters indicated that BA.4/5 is more pathogenic than BA.2. Altogether, our multiscale investigations suggest that the risk of L452R/M/Q-bearing BA.2-related Omicron variants, particularly BA.4 and BA.5, to global health is potentially greater than that of original BA.2.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar
3.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3682826

ABSTRACT

Recent studies profiling the innate immune signatures in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suggest that cellular responses to viral challenge impact disease severity. Yet, the molecular events that underlie cellular recognition and response to SARS-CoV-2 infection remains to be elucidated. Here, we find that SARS-CoV-2 replication induces a delayed interferon (IFN) response in lung epithelial cells. Through a survey of putative sensors involved in detection of RNA virus infection, we found that MDA5 and LGP2 primarily regulate IFN induction in response to SARS-CoV-2 infection. Additionally, we find that IRF-3, -5, and NF-kB/p65 are the key transcription factors regulating the IFN response during SARS-CoV-2 infection. In summary, these findings provide critical insights into the molecular basis of the innate immune recognition and signaling response to SARS-CoV-2.Funding: This work was supported by the following grants to the Sanford Burnham Prebys Medical Discovery Institute: DoD: W81XWH-20-1-0270; DHIPC: U19 AI118610; Fluomics/NOSI: U19 AI135972, as well as generous philanthropic donations from Dinah Ruch and Susan & James Blair. This work was additionally supported by the following grants to Northwestern University Feinberg School of Medicine: a CTSA supplement to NCATS: UL1 TR002389; a CTSA supplement to NUCATS with the generous support of the Dixon family: UL1 TR001422; and a Cancer Center supplement: P30 CA060553. Development and implementation of iPS cell technology for production of airway epithelial cells was supported by Incubation Program from Office of Society Academia Collaboration for Innovation, Kyoto University. Conflict of Interest: The authors declare no competing interests.


Subject(s)
Coronavirus Infections , Tooth, Impacted , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL